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In the solution of many problems of hydro-aerodynamics [ 1,2 ] and in the
theories of elasticity [3,4 ] and filtration [5,6 ], there occur integrals
with kernels of the Cauchy type defined on intervals of the real axis.
Some of these integrals can be reduced by means of simple transformaticns
to either one of two integrals of the following type:

1

J(x):% g_tfi‘)x dt (—1sCe<) (0.1)
-1
Vi ) dt . o
1 (z) - St_x»m_# I<ascl) (.2)

These integrals exist in the sense of Cauchy’s principal value if the
function f(x) satisfies Hoelder's condition [7,8] on the interval between

the limits — 1 and 1.

With the aid of the transformation of variables x = cos @, t = cos ¢,
the integrals J(x), I(x) can be written in the trigonometric form

3

J(msmzzl_g_lﬁﬁiﬂ__gn¢d¢ 0<0<m) (0.3)
© Jcos¢e— cos0
0
R ™
I (cos 0) — 529 S 7{cose) yq (0<6<m) (0.4)
™ cos ¢ — cos 0 N <
0

In this form these integrals appear in the theory of wings [2,9].
There exist many types of integrals which can be transformed to one of
the integrals J(x) or I(xz) by means of simple transformations and, hence,
to either one of them. For example, the known singular integrals whose
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kernels are either the cotangent or logarithm, and which are met in the
theory of waves and jets, can be reduced to the integrals J(x) and I(x)
be means of the relations

k13
-l_%f(MEQ)MgB—;Q dp = J (cos0) + I (cos 0) (0.5)
T
0
-
N & 2 f(coso)ln|sin 2% csc 219 | dp — 7 (cos 0) (0.6)
n ) de 2 2
0

It is known that, due to the fact that the integrals J(x) and I(x)
are singular, one cannot directly apply many formulas of mechanical
quadrature [ 13 ] for the evaluation of these integrals, even though those
formulas may be valid for ordinary Riemann integrals. However, if one
takes into account the properties of the integrands, one may with the aid
of various transformations obtain various formulas for mechanical quadra-
tures that are applicable to singular integrals also. Such formulas- of
mechanical quadratures were obtained by Multhoop [ 9] for the integrals
(0.3) and (0.4), by Kalandiia [ 10 § for the integrals (0.1) and (0.2),
and by Simonov [ 11 ] for the integral (0.5).

Below there are derived formulas which make it possible to obtain
approximate expressions for the integrals J(x) and I(x) and to estimate
the error in the approximation. The obtained formulas contain functions
defined in terms of elementary functions or in terms of rapidly converg-
ing series. Tables are given for some of these functions.

1. Let us introduce into our consideration the Chebyshev polynomials
of the first and second kind

T,.(x) = cosnarccosz, U,(z) =sinnarccosz
It is not difficult to sﬁfw that T (x) and U, (x) satisfy the relations

vy : T T d
e ——r@, VR e

T t— x T Vi~
—1 —1

Let the function f(x), which appears in the integrals J(x) and I(x),
satisfy the Hoelder condition on the interval between the limits -1 and
1. Then the integrals J(x) and I(x) can be represented in the form of the
series

J (@)= N—b,Tn(z) (—1 <z <) (1.2)
n=1

I (x) = ZanUn () (—1I<e <) (1.3)
n=1

where
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Indeed, in this case it follows from the theory of the Fourier series
that the function f(x) can be represented on the interval bLetween the
limits — 1 and 1 by means of a series in terms of Chebyshev polynomials
of the first kind

fla) =2+ R aln@  (—1c 1) ()

n=1

or in the form of a series 1in polynomials of the second kind

/w%-lbvuw (—1<a ) (1.6)
Let us replace the function f(x) in the integral J(x) by the series
(1.6) and in the integral (1.5) by the series (1.5). With the aid of the

relation (1.1) we then obtain the formulas (1.2) and (1.3). The use of
these formulas for the computation of the integrals J(x) and I(x) is not
recommended, for the series (1.2) and (1.3) converge slowly, and the
coefficients a  and b must be evaluated by methods of numerical integra-
tion. In the case when the series appearing on the richt-hand sides can
be summed in a closed form, the formulas (1.2) and (1.3) give the exact
values of the integrals J(x) and I(x). If the integrals J{x) and I(x) are
given in the trigonometric forms (0.3) and (0.4), the equations (1.2) and
(1.3) take on the form:

J(cosl) = — :ﬂ {1y cos RO 0< 8= (1.7)
n=1
I {cost) = Z an sin n (0<0r) (1.8)

n=1

The formulas (1.7) and (1.8) make it possible to use the results of
the theory of trigonometric series in the investigation of the properties
of the integrals J{(x) and I(x).

2. Let us consider the functions defined on the interval between the
limits — 1 and 1 by the equations

20 [oe]

Tons (2), P (@) = ) = Tan (2) 2.1)

T Aen—1)° 2
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o &)

1 U .
@ (x) = Z 7,)—'1'—1-1—)!]21»—1(@‘)1 g2\ () = Z( Uon () (2.2)
n=g =7 n=2
(s=1,2,...; —1<<z<CY)

We shall point out certain properties of these functions. The functions
U(x) and pz(l)(x) have singularities of the logarithmic type at the
points = 1, and x = ~ 1;

(@) = e p (1) =— Llud

2?) — + (22 —1)

while the functions ql(l)(x) and 72(1)(x) can be expressed on the interval
between the limits —land 1 in the form

O () =t — )1 —a? g:V () = F=— Larccosz —z )/ I —a2

The remaining functions are continuous on the entire interval between
—1 and 1. We note also that p (s)(x) and 7, s)(x) are even functions,
while pl(s)(x) and qz(s)(x) are odd functions, 1.e.

P (— 2) = — p (@), p (—2) = pa® ()
0¥ (—2) = @ (z), 7 (— ) = — g (2) (2.3)

If one makes use of the equations (1.1), it is easy to show that all
the introduced functions satisfy the following integral relations:

. 1 . 1 .
Vi—x‘lg ARG Y V1—~x28 o w

.. (s) _ P
< t—z Vi—g N (o), ks 9, r—zx Vi—s g2 (x)
.1
V1222 ¢ (signt) ™ (%) a1 .
= & t—=x Vr:ﬁ‘zpl(s) (")
=2 ¢ ' (¢ di
\ ¢ _—(»c =z (signz) g, (z7)
g ———( YO g pyo L{a 0 2.4
—\IEFd=—po @, L\ A= @) (24)
2 2
1 - Pl(s)(t ) . . 1 : (sign 1) g2¥(¢*%) .
ERNEEE dit = — (sign ) ¢, (z7), = S o AL = ) (27)
~! -1 (2.9)

where

= Y1 —2? =Y 1— (2.6)
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The equations (2.3) make it possible to restrict the computation and
study of the properties of the introduced functions to the interval be-
tween the limits 0 and 1. By means of a change of variables x = cos 6,
the functions pl(s)(x), pz(s)(x), ql(s (x) can be rewritten in the tri-
gonometric forms:

cos (2n —1)0 (2n —1)0 3 cos2nf
P (cosb) = , Pa® (cosB) = X S5
A en—1y noy (@n)°
(2.7)
(s=1,2,...:0<0< )
< sin (27 — 1)0 i
(s) COSO e v .S_lu_-__)__’ (s) (‘,OSO — y! M
7 ( ) néz 2n —1)° 7.9 ( ) n%g (2n)®
(2.8)
(s—1,2,...: 0<0< )

Such a form is convenient in the computation of these functions, since
in this one does not have to deal with Chebyshev polynomials but with
trigonometric functions. In the attached Tables 1- 3, the values of some
of the functions considered are given, computed with a precision of four
places. Tables 1 and 2 were computed with the aid of formulas (2.1) and
(2.2); Table 3 was computed using formulas (2.7) and (2.8).

TABLE 1,

x e | oPw | o@ | @ | P | P | o | e

0.0000 0.0000 0.1534 0.0123 | —0.0840 | —0.0111| 0.0000 0.0
—0.0498 | —0.0083 0.1459 0.0115{ —0.0815| —0.0106 | —0.0151 | —0.0042
—0.0986 | —0.0162 0.1236 0.0093 | —0.0740 | —0.0095 | —0.0289| —0.0023
—0.1452 | —0.0233 0.0870 0.0058 | —0.0614 | —0.0073 | —0.0399} —0.0031
—0.1882 1 —0.0289 0.0370 0.0010 | —0.0435 | —0.0045 ] —0.0466 | —0.0034
—0.2253 | -—0.0325| —0.0246| —0.0043 | —0.0202 | —0.0011 | —0.0473 | —0.0032
—0.2534| —0.0333 —0.0950| —0.0096| 0.0086| 0.0029|—0.0401{ —0.0024
—0.2663 | —0.0299 | —-0.1682 | —0.0139] 0.0431| 0.0071|—0.0227| —0.0008
—0.2507 | —0.0203 | —0.2312| —0.0151| 0.0829| 0.0110| 0.0080 0.0014
—0.1639 | —0.0001 | —0.2414| —0.0091| 0.4242| 0.0133( 0.0582 0.0039,

o 0.0518 o) 0.0253 o) 0.0000| ©,0000 0.0000

O WO NDUTN WY~ O
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TABLE 2.
| e | pPen | ean | oPen | e | e | e | el
!
0. oo 0.0518 e} 0.0253| 0.0000] 0.0000] 0.0000 E U. 0000
0.1 0.5016 0.0455 0.3147 0.0200 0.0999 0.0050; 0.0809 0.0023
0.2 0.1664 0.0335| —0.0018 0.0108| 0.13171 0.00901 0.0945 G.0039
0.3 | —0.0170 0.0194| —0.1546 0.0014| 0.1386] 0.0117 0.0856 0.0045
0.4 | —0.1331 0.0049 | —0.22841 —0.0067 | 0.1301 0.0130} 0.0645 0.0042
0.5 1 —0.2075 0.0086 | —0.2500; —0.0124 0.1106 0.0128 0.0372 0.0031
0.6 | —0.2507| —0.0203 | —0.2312| —0.0151 (5.08291 0.0110, 0.0080 0.0014
0.7 | —0.2663| —0.0290| —0.1782| —0.0143 0.0484 00077 ; —0.0192 | —0.u005
0.8 | —0.2534| —0.0333 [ —0.0950 | —0.0096 0.0086 0.0029: —0.0402 | —0.0024
0.9 | —0.2023 | —0.0305 0.0161 | —0.0008 | —0.0358 | —0.0034 | —0.0476 | —©.0034
1.0 0.0000 0.0000 0.153 0.01231 —0.0840 | —0.0444 1 0.0000:  0.2000
TABLE 3
p{ ) p{¥ () pihx) P4 () (@@ | P | P dPe

cos 0° a0 0.0518 on 0.0253 0.0000 0.0000! 0.0000 0.0000
cos 5° 0.5695 0.0468 0.3811 0.0210 0.0934 0.0044 0.0764 0.0021
cos 10 0.2333 0.0370 0.0589 0.0134] 0.41264{ 0.0080] 0.0938 0.0036
cos 15° 0.0479 0.0253 1 —0.1038 0.0052 0.1380] 0.0108 0.0911 0.0044
cas20°] —0.0720 0.0133 | —0.1932} - .0.0023 0.1366 0.01241 0.0777 0.0045
c0s25°% —0.1531 0.00181 —0.2337 | —0.0082 0.1265( 0.013% 0.0587 0.0040
cos 30°) —0.2075 1 —0.0086 | —0.2500) —0.0124 0.1106 0.0128 0.0372 0.0021
€05 35° —0.24206] —0.0174] 2-0.2397 | —0.0147 0.0909 0.0116 0.0157 0.0019
c0s40°| —0.2607 | —0.0244| --0.2424 | —0.0152 0.0689 0.0098 | —(.0041 0.0006
c0840° -—0.2664{ —0.0294| —0.1733| —0.0141 0.0458 ] 0.0074|—0.0210{ —0.0007
c0880° —0.2613 | —0.0324| —0.1265| —0.0117 0.0227 0.0047 | —0.0341 { —0.0018
cosb9°l —0.24721 -—0.0334] —0.0758 | —-0.0083 0.0004 0.0018 | —0.0430 | —0.0027
cosB0°| —0.2253] —0.0325] —0.0247 | —0.0043 | —0.0202 | —0.0011 | —0.0473} —0.0032
cos65°] —0.1972 | —0.0299 0.0240| —0.0001 | —0.0387 | —0.0038 | — 0.0473 | —0.0034
c0s70° —0.1638 ) —0.0259 0.0676 0.0039 | —0.0545 | —0.0062 | —-0.0433 | —0.0033
cos75°] —0.1264| —0.0136 0.1038 0.0073 | —0.0672 | —0.0083 | —0.0358 | —0.0028
cos80°f —0.0859| —0.0142 (.1309 0.0100 | —0.0765 | ——0.0098 | —0.0255{ —0.0020
c0885°| —0.0435| —0.0205 0.1477 0.0117 | —0.0821 | --0.0107 | —0.0132 } —0.0011
cos 90° 0.0000 0.0000 0 1534 0.0123 | —0.0840 | —0.0111 (). 0000 0.0000
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3. We define the function f(s)(x) by means of the equation
) () - Lﬁir f . ) :
[ )= («!IOS / (cosf) )0 =arc cos x (s==0, 1.9 (3.1

and call it the trigonometric derivative of order s of the function f(x).
We denote by W (2k)(M2k; —1, 1) the class of functions satisfying the
following conditions. (1) An arbitrary function f(x) belonging to this
class possesses continuous trigonometric derivatives f'$/{(x), (s = 0,

1, ...) up to the order (2k— 1), inclusive, on the interval between the
limits ~ 1, 1 except at the point x = 0. (2) The 2k-th trigonometric
derivative of this function satisfies the inequality

e ()1 < M (3.2)

(3) At the point x = 0, the function f(x) and its trigonometric deriva-
tives f(s (x) can have discontinuities of the first kind:

QTLﬂ = S (A 0) — 9 (—0) (s =0, 1,....2k) (3.3)

The class of functions W&(Zk)(MEk; -1, 1) is a type of generalization
of the class W ") (W; a, b) Considered by Nikol’skii [ 12, 13].

Let us introduce the notations:

(3.4)

2y ) = JE (1) & f (= 1), 20,0 e ) (1) — f9) (— 1) (¢ =0, 1,..., 2k

*

ay’ = ay, ay’ = a,, by =1y, by" = by (3.5)

k
« AN
Aoy == a;‘zm B "7;‘ {

s=1

(=1

N2 e
(Zm)

((— 1ym ,T(-zs~~l) — o)

k
* 4 W (_ 1)3

(Uort’ = Aoy — = Dy — o (— )™ (2m — 1) 425D L (25-D)
h - Foao Em— 1)="
k s
bzm$ - bjm - i > ‘i" ((— 1))71 TS(S*I) - ,{22(5——1)) (36)

5 9y 281
T 5—1 (Zm)

k
baer’ = bayg — o 3 I (g (2 — 1) py2ie )

oo Em— 1)
where a, and b, are Fourier coefficients given by the formulas (1.4).

We introduce the number N{n, k) by means of the defining equation:

N k) =h(n 07 (L4l D4 o f L1 T

2n

(3.7)
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Theorem 1. let f(x) W (Zk)(Mzk;—-l, 1), then the following two re-
presentations are valid fgr the function f(x) on the interval between the
limits -1, 1

k
J@) = D) (— A [ 0p ) () — (sign ) g, () + (3.8)

s=1

(101

= Tz‘izs—l)P‘z(“’s) (J)) - .{(23—»1)p2(25)(x‘)] + VR 2 am'Tm (T) + rn(l) (*‘)
=1
, k "
()= 20 (= 1 [ 0p 9 (2) - 2oy o () - e gy 0(a) +
<=
n

- (sign x) p2 D=0 (27)] <o D) byt U (2) - 7,9 () (3.9)

m==]1
where rn(l)(x) and rn(z)(x) satisfy the inequalities
|7, (z) | <Moo N (n,F), [ r@(x) | < My N (n, k) (3.10)

Proof. Let us apply the formula for integration by parts 2k times to
the integrals occurring in the equations (1.4). We then obtain the rela-
tions (3.6) where

1

R G Ve (k) _ 2 S (2k) , d
iy = Iljk ay ’ @, =" = ? j (Z) Tn (E) V1 2
—1
1
« (— 1" o1 2 S . dx
h,T =}  (2k) (2k) —— (2k) [t S,
b == g b, b, R AOUAC R CREY
—1

Substituting into the series (1.5) and (1.6) for a_ and b_ their ex-
pressions from (3.6), we obtain the equations (3.8) and (3.9 where

[s+]

nW@ = D e Tm@, @@= 2 bn"Un)
nr=n-1 m=n+1

The formulas (3.11) can be used for the determination a, and b , if

n’
one knows the derivative f{2%)(x).
We shall prove that rn(l)(x) and r"(z)(x) satisfy the equation (3.10).
If we introduce into our consideration the sums
m

M
oV () = D) a, 0T, (), 3,2 (x) = D) BT, (2),
v==1

v=1

then we obtain the following relation for rn(s)(x). s=1, 2:
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OE\ 0m<8) () — 0,1 (2) ,
| ) (2) | = 2_'+ — 1 _ 12
m=n-1
0,(® () ot i . s
:,—W“L _2‘¢1<,Zﬂc—m)°m“(x) (3.12)

The function f(x) W Zk(Mzk; —1, 1) and hence the inequality (3.2)
can be applied. It 1s, "therefore, easy to show that

|om®) (2)] < 2My (1 + In % + Inm) (s = 1,2) (3.13)

Let us estimate each term of the series (3.12) with the aid of (3,13),
and by means of the sequence of inequalities

[o0}

m 41 1 1 1
m

In

< ) 3
m e G D T YO VR

We obtain the result

| 72 () | < Mgp — 2

(n 1 (Z +2in ¥L+ % -+ %j = MyN (n. k)

(s =1,2)
which was to be proved.

4. The results of the preceding section make it possible to obtain
approximate formulas for the evaluation of the integrals J(x) and I(x).

Theorem 2. Let f(x) wy(Zk)(MZk; -1, 1), then

J (@) =TI (z) = %

k
S (— 1) e p D (2) + (sign @) Y qa) (&) +
8=1

b e po(25=1) () — 25— py (261 (27)] — 2 by Ty, (2) (4.1)
=1
. m
@) =¥ (2) = 2 2 (— 1 [— peIp @ (@) + @00 (2) —
1

s=
ki3

- (25 —1g,(28) (x) - (sign z) Y25~ Dg,29) (2*)} — 2' ap U (2) (4.2)

. —
wherein m=1

[J (@) — T () | < MyN (k). |1 (x) — 1.® ()] < MuN (n, k) (4.3)

Proof. Let us substitute for f(x) its expressions from (3.8) and (3.9)
into the integrals J(x) and I(x), respectively. Making use of the equa-
tions (1.1), (2.4) and (2.5), we obtain
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J () = Ja® () + @ (z), 1 (2) = 1P () +r®(2)

where . 0
r® @)= — 2 bn' Tm(2), ra® () = X am Un(2)
m=n-1 m=n-+1

In a manner entirely analogous to the one used in the preceding
section for the estimate of r 1)(x) and r 2)(x), we can show that

[ ra® (2) | < M N (n, k), | ra@® (2) | < MoN (n, k)

Comparing these inequalities with the expression for J(x) and I(x)
obtained above, we establish the validity of formulas (4.1), (4.2) and
(4.3).

We call attention to three particular cases when the formulas (4.1)
and (4.2) are simplified.

(1) The function f(x) and its derivative are continuous at the point
x =0,

k
J (@) = T (2) = = 3] (— 1)° [1,26DpyD () 4+ 1326~ ()] —
8=1
— D bt T (), (@) —Ja® (2)] < Myl (n, k) (4.4)
m=1

k
H @)= LO@) = 2 3 (— 1 00,09 (2) + 156-0g,0 (2)] +
s=1

+ D et Un(z), |1 (2)—L® (z)]| < MyN (n, k) (4.5)

m=1

(2) The function f(x) is even, i.e. f(- x) = f(x):

4
"

b=

J(2) = T (z) = (— 1) [y22eDp @ —(2) +(sign ) Y& Vg, @) ()] —

1

— D boms Tomer (@), [T (@) — I® (2)) < MuN (2n—1, k) (4.6)
m=1
I(z) =[x (z) = é (— 1)2 [12Dg,C) (x) - (sign x)y(28—Dg, (27)] +
1

iD=

n

+ ) @ Usm (@), |1 (@) —I¥ (2)| < MuN (2n, k) (4.7)

m=1
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(3) The function f(x) is odd, i.e. f(-=x) =~ f(x):

k
J(x)zjgk) (z) = ?* 2 (_1)s[722(s—1)p2(:s;1>(x)f,rﬂs—l)pz(zs*n(x*)]_

s==1

— DV o™ Tom (2), LT () — T8 (2) | < MyN (2n, k) (4.8)

m=1

k
I(@)=~ 1 (z) = = 2 (— 1) [— PEDpy @D (2%) 4 4y Dg,e)(3)]
4 D G Ui (2), [ T(@)— 19 () | << MuN (2n— 1, k) (4.9)
m=]1

If the function f(x) is even, then
J(—a) = —J (2), [ (—a) = — 1 (2) (4.10)
If the function f(x) is odd, then
J(—2) = J (2), I (—a)=1I (2) (4.11)

In the nature of an example illustrating the presented method, we con-
sider the integral

I (2) = (—1<or<1) (4.12)

1,,
Viza Q’M’f L
= A A
= V
Here the functionm f(x) = m| x|/ 4 is even. Hence, for the evaluation of
this integral one can make use of the particular case (4.7) of the formula
(4.2). Using formulas (3.1) to (3.6) we find

12 (@) = (— )" T (signa) Y1 — %, f‘”’ (2) = (—1)° T |«
1D 0, 4D (g T My, = _Z,
L =nm TS PR S P S ok o
om hme —1 - (m ? "")’ d2 3 am ‘(2771)2/" (4m,2 . 1) {m=2,3,...)

Substituting the obtained quantities into the formula (4.7), we obtain

k
I(z) = 1,% (z) = (signz) D) 2 (&) + o Uz (@) + Z

s=1

[T (z)y—1,® (x]< T N (2n, k) (4.14)

(— )™

_ =4 x)(4.13)
, (2m)* (hm? — 1)

Uyl

The formula (4.13) makes it possible, with the use of the estimate
(4.4), to evaluate the integral (4.12) with an arbitrarily prescribed de-
gree of accuracy. On the other hand, with the aid of formula (1.3), or by
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direct integrations, one can find the exact value of the integral (4.12)
in terms of elementary functions

I (2) =« Arth }T—%* — z Arch -
x

Since the considered integral is an odd function, one can restrict its
evaluation to the interval between the limits 0 and 1 and compute the
approximate value of the integral at various points of the interval be-
tween the limits 0 and 1 and compare these results with the exact values
of the integral. We obtain the following results:

z—=0.0 0.1 cos 80° 0.2 0.3 cos 70° 0.4 0.5 0.6
Tzy=0.0000 ©.1497  0.2145 0.2292 0.2811  0.2968  0.312%  0.3292 0.3296
IYz)=0.0000 0.1497 0.2116 0.2292 0.2811  0.2967 0.3134  0.3292 0.3295

z=cos 50° 0.7 cos 40° 0.8 cos 30° 0.9 cos 20*  cos 10° 1.0
Tx)=0.3248 0©.3130 0.2922 0.2773 0.2379 0.2102  0.1674  0.0864 0.0000
I2(x)=0.3248 03135 0.2922 0.2774 0.2380  0.2103  0.1673  0.0863 0.0000

From this it can be seen that the approximate values of the integral
(4.12), computed by means of the formulas (4.13) for n = 2 and k = 2,
differ from the exact values only by one in the fourth decimal place. The
estimate (4.14) in this case yields

T (x) — 1O () < 06162

i.e. the formula (4.13) is actually more precise than the estimate (4.14)
indicates.

In conclusion the author considers it his duty to express his appreci-
ation to A.V. Bitsadze and S.M. Nikol’skii for the valuable advice he
received from them in their appraisal of this work, and he also thanks

V.M. Egorov and A.B. Shkirich for their help in the construction of the
Tables.
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